
TCP/IP Data Transfer With
The NetManage TCP ActiveX
by Bill Fisher

One of the cool add-ons which
originally shipped with the

Delphi 2.01 maintenance release is
the Internet Solutions Pack (ISP).
The ISP is a collection of ActiveX
controls that Borland licensed
from NetManage, a company spe-
cializing in Internet connectivity.
You might notice that the ISP is
fully acronym-compliant, as it in-
cludes controls for TCP, FTP,
HTML, HTTP, NNTP, POP, SMTP
and UDP. These controls can all be
found on the Internet page of
Delphi’s Component Palette, and
example code for these controls
can be found under the \Delphi
2.0\Demos\Internet sub-directory.
In this article, I’ll focus on the TCP
control.

While the TCP demo application
found on the Delphi 2.01 CD is nifty,
it only shows how to work with
string data. In this article, you’ll
learn how to build simple TCP pro-
jects that send and receive arbi-
trary binary data. I’ll start with the
“sender” application entitled Sen-
dApp, then move into the “receiv-
ing” application called RecApp.

Sender Application
For the purpose of this article,
SendApp will broadcast one of three
types of data to RecApp: a sound
(.wav file), an image (.bmp) and a
program (.exe). Of course, it really
does not make a difference what
the data is, it’s just bytes as far as
the controls are concerned. To fa-
cilitate communication I have a
unit shared by SendApp and RecApp
that holds handshaking informa-
tion. It contains the following
interface declarations that de-
scribe what type of data will be
transferred:

const
 OneI_BitMap = 0;
 OneI_Wav = 1;
 OneI_EXE = 3;

Since the TCP control only
knows how to send and receive bi-
nary chunks of data, it never knows
how much or what type of data it is
sending or receiving. Using the re-
cord defined below SendApp com-
municates to the RecApp what kind
and how much data they are
working with:

type
 PTFisherTCP = ^TFisherTCP;
 TFisherTCP = record
 Size: Integer;
 Tag: Integer;
 end;

At some point, the RecApp will need
to allocate sufficient memory for
the data and manipulate the data in
a manner dictated by its format.
There are a number of ways the
sender could communicate this re-
cord to the receiver, and I consid-
ered the following scenarios: 1)
Send the record before each data

transfer session, or 2) prepend or
append the data with a record, so I
know the first (or last) few bytes of
data will tell what it is and how big
the data is, or 3) send all of the
data, and then send an “I am done”
signal along with the data at the
end of the data transfer (and take
some measure to ensure that some
pattern of bytes in the data isn’t the
same as the “I am done” signal). I
chose option 1), since it allows me
to allocate a fixed-size buffer be-
fore the data arrives. It is simple to
implement, easy to understand,
and it will not cause a major hit on
performance.

Regardless of the type of data,
for our program all transmissions
are routed from one procedure,
defined as:

procedure SendFisherTCPData(
 Location: Pointer; Size,
 DataType: Integer;
 Tcp: TTcp);

procedure SendTCPData(Location: Pointer; Size: Integer; DataType :
 Integer; Tcp: TTcp);
 procedure FillHeader(PHeader: PTFisherTCP; DataType, Size : Integer);
 begin
 PHeader^.Size := Size;
 PHeader^.Tag := DataType;
 end;
var
 PHeader: PTFisherTCP;
 HeadBuffer, DataBuffer: Variant;
 Ptr: Pointer;
begin
 PHeader := AllocMem(sizeOf(TFisherTCP));
 try
 FillHeader(PHeader, DataType, Size);
 {send the header}
 try
 HeadBuffer := VarArrayCreate([0, SizeOf(TFisherTCP)-1], VarByte);
 Ptr := VarArrayLock(HeadBuffer);
 Move(PHeader^, Ptr^, SizeOf(TFisherTCP));
 finally
 VarArrayUnlock(HeadBuffer);
 end;
 Tcp.SendData(HeadBuffer);
 finally
 FreeMem(Pheader);
 end;
 {Send the Stream}
 DataBuffer := VarArrayCreate([0, Size -1] , VarByte);
 try
 Ptr := VarArrayLock(DataBuffer);
 Move(Location^, Ptr^, Size);
 finally
 VarArrayUnlock(DataBuffer);
 end;
 Tcp.SendData(DataBuffer);
end;

➤ Listing 1

46 The Delphi Magazine Issue 21

The parameters for this procedure
are defined as:
➣ Location: a pointer to the start

of the data.
➣ Size: the size of the data block

pointed to by Location.
➣ DataType: the type of data being

transferred (so the receiver
knows how to deal with it).

➣ Tcp: The TCP control to use to
send the data.

I will spend some time examining
this procedure because it alone
does most the work for the pro-
gram. All you need to do is get a
pointer to your data, pass it along
and whoosh! It’s sent. The method
you use to obtain your data pointer
is totally up to you.

SendTCPData declares a local pro-
cedure which fills in the header re-
cord. This is done as a local
procedure rather than in the proce-
dure body simply to allow for fu-
ture expansion of the project, as it
really does very little and saves no
lines of code. See Listing 1.

Let’s take a quick look at the
local variables in SendTCPData. First,
PHeader is simply a pointer to the
header data record. HeadBuffer and
DataBuffer are data buffers. I use
variants, because, being an Ac-
tiveX control, the TCP component
uses variants for passing data. Ptr
is used to transfer contents to vari-
ants from Object Pascal pointers.

In both of the example programs
discussed I’ll use a method similar
to that shown in Listing 2 for trans-
ferring the blocks of memory. On

line 2, we allocate memory for the
“in” HeadBuffer by making a variant
array of type byte. On line 3, we lock
the HeadBuffer variant array in
memory so it can be copied. On line
4, we copy memory from the
pointer to the variant array. On line
6, we unlock the variant array from
memory. We wrap the whole thing
in a try-finally block to make sure
the lock is released.

Here is another key point of this
example. As most data will be gen-
erated with standard Object Pascal
types like pointers and classes, the
data needs to be converted to vari-
ants to work with the TCP control.
Also, be careful with the Move pro-
cedure: it moves blocks of memory
with no regard to the areas of mem-
ory affected. Because of this, it can
cause horrendous memory corrup-
tion that can be very difficult to
track down, because the corrup-
tion may manifest itself in another
area of the program or not at all.
Pay special attention when using a
pointer type as a parameter to
move, as that requires use of a
caret (^) to de-reference the
pointer.

Once the HeadBuffer is properly
filled, the data can be sent out on
the wire with:

Tcp.SendData(HeadBuffer);

On the other end, RecApp will de-
code the data record and allocate
enough memory to store it. It will
then quietly sit there and collect

the data packets as SendApp broad-
casts them. The TTcp control will
handle packet construction, in-
cluding packet size. The TCP/IP
protocol itself will handle all hand-
shaking and packet error correc-
tion, including re-sending corrupt
packets. So, fortunately, you do not
need to be concerned with these
issues.

After the data record has been
transmitted, it is time to send the
actual data. Again, I create a variant
array, lock it in memory, copy data
into it and unlock the memory.
Finally I transmit it exactly as I sent
the data record.

As you can see from Listing 1, a
few more goodies added like excep-
tion handling and proper memory
management are also added.

As I explained earlier, the
method used to obtain a pointer to
the data and the data’s size is in-
consequential. The methods I
used, however, may serve to
quickly demonstrate a couple of
ways to get at your information. I
started my testing with a bitmap
and I suggest that you do as well.
Bitmaps are forgiving when it
comes to corruption: problems will
often manifest themselves as vis-
ible glitches in the bitmap rather
than annoying system crashes.
Also, bitmaps themselves contain
information about the image
loaded at the beginning, but no
footer data. This works well if your
data gets truncated or corrupted
after the first packet. In my case, I
use a TImage to hold the image I
want to transfer. In this example,
I’ll move the image into a memory
stream in order to help demon-
strate how to send a TMemoryStream.
All in all, the process for calling
SendFisherTCPData is rather mun-
dane. See Listing 3.

After sending some bitmaps suc-
cessfully, it’s time to move onto a
slightly more complex type of data.
Wav files make good test data too.
This format lends itself to detect-
ing whether footer or other trailing
information is somehow truncated.
Again, I employ a TMemoryStream to
send the data. See Listing 4.

Lastly, I will transfer an actual
program (Listing 5). Once the
initial transfer types are working

try
 HeadBuffer := VarArrayCreate([0, SizeOf(TFisherTCP)-1], VarByte);
 Ptr := VarArrayLock(HeadBuffer);
 Move(PHeader^, Ptr^, SizeOf(TFisherTCP));
finally
 VarArrayUnlock(HeadBuffer);
end;

➤ Listing 2

procedure TSendMain.SendBitMap1Click(Sender: TObject);
var
 Stream : TMemoryStream;
begin
 Stream := TmemoryStream.Create;
 try
 SendMain.Image1.Picture.Bitmap.SaveToStream(Stream);
 Stream.Seek(0,0);
 SendTCPData(Stream.memory, Stream.Size, OneI_BitMap, Tcp1);
 finally
 Stream.Free;
 end;
end;

➤ Listing 3

May 1997 The Delphi Magazine 47

satisfactorily, it is very little effort
to add more data types to the
transfer mechanism.

Before going onto the “receiver”
application, there is one more
feature I would like to add. The
TTcp control does not have an
OnStateChange event, which would
be necessary to determine when to
update the connection’s state
within the user interface.

One way to solve this problem is
to have a TTimer fire off periodically
to ask the TTcp control about its
current state. The OnTimer event
will make a call to the GetTcpState
function (Listing 6) which will
return a string value that can be
used in the user interface. Fortu-
nately, the control does have a
state property of type integer, so I
use a simple case statement to
return the desired string.

While discussing the State prop-
erty, I’d also like to point out an-
other problem that cropped up
during development of this appli-
cation. Occasionally, when termi-
nated, it would generate an Access
Violation.

It seems that the TCP control
doesn’t completely de-initialize it-
self even after its Close method is
called and its State property is
checked to insure the control is
actually closed. To get around this,
just add a little loop to pause after
closing. Admittedly, this is not the
most elegant solution in the world,
although it does do the trick. This
problem did not surface in the
SendApp application, but it did in
RecApp where I had controls in a
“listening” state.

Receiving Application
As it turns out, RecApp has a few
more pitfalls than SendApp. I found
a problem immediately when try-
ing to design the application using
just one TCP control. This won’t
work, as the TCP controls cannot
handle connection requests all by
themselves.

So we need one TTcp control
whose job is to simply listen for
connection requests and then
hands those requests to a second
TTcp control which services the
connection. This takes place in the
listening control’s Connection

Request event handler. The
“listener” will invoke the “handler”
control’s Accept method and the
“listener” will then close.

This dual control design is nec-
essary because only one TCP con-
trol at a time can handle
connections. So until that “han-
dler” is finished, the application
should refuse all other connection
attempts. Closing the “listener”
achieves this, without forcing the

new connection attempt to wait
while the application tries to figure
out which control should handle
an incoming connection. See
Listing 7.

Once a connection has been ac-
cepted by a TCP control, its Data-
Arrival event is fired off repeatedly
until the data transmission is com-
plete. At that point both controls
should be reset and wait for
another connection request.

procedure TSendMain.Sendwav1Click(Sender: TObject);
var
 DefaultFile : String;
 Stream : TMemoryStream;
begin
 Stream := TmemoryStream.Create;
 try
 DefaultFile := ExtractFileDir(ParamStr(0)) + ’\’ + ’ah.wav’;
 Stream.LoadFromFile(DefaultFile);
 Stream.Seek(0,0);
 SendTCPData(Stream.Memory, Stream.Size, OneI_Wav, Tcp1);
 finally
 Stream.Free;
 end;
end;

➤ Listing 4

function GetTcpState(Tcp : TTcp): string;
begin
 case Tcp.State of
 0: Result := ’Closed’;
 1: Result := ’Open’;
 2: Result := ’Listening’;
 3: Result := ’Connection is Pending’;
 4: Result := ’Resolving the host name’;
 5: Result := ’Host is Resolved’;
 6: Result := ’Connecting’;
 7: Result := ’Connected to ’ + Tcp.RemoteHost;
 8: Result := ’Connection is closing’;
 9: Result := ’State error has occurred’;
 10: Result := ’Connection state is undetermined’;
 end;
end;

➤ Listing 6

procedure TSendMain.SendEXE1Click(Sender: TObject);
var
 DefaultFile : String;
 Stream : TMemoryStream;
begin
 Stream := TmemoryStream.Create;
 try
 DefaultFile := ExtractFileDir(paramstr(0)) + ’\’ + ’OneEye.exe’;
 Stream.loadFromFile(DefaultFile);
 Stream.Seek(0,0);
 SendTCPData(Stream.memory, Stream.size, 3, Tcp1);
 finally
 Stream.Free;
 end;
end;

➤ Listing 5

procedure TMainForm.TCP2ConnectionRequest(Sender: TObject; requestID: Integer);
begin
 {Note: these TCP controls can not issue an accept() to
 themselves. So there must be two controls}
 Tcp1.Accept(requestId);
 Tcp2.Close;
 caption := ’Connected’;
end;

➤ Listing 7

48 The Delphi Magazine Issue 21

The DataArrival event will be
called each time packets are
received. The code is in Listing 8.

Because of the nature of TCP/IP,
we don’t know how many times
this event will fire, regardless of the
data size. Even if it was fired six
times during the transmission of
some particular set of data, there’s
no guarantee it will be called six
times the next time you transmit
that data. The application must
handle the transaction in such a
way that you can save the previous
data and append the current data.
All you can count on is that the
DataArrival event will fire one or
more times during transmission.

Before getting deeply involved,
let’s lay out the game plan. In the
DataArrival event handler, I’ll use
global variables to determine if we
are receiving actual data (not a
record header). Using a header, I’ll
know the size of the data transmis-
sion before I receive the data. In

this way, I can allocate enough
memory to store all of the data, not
just this packet, beforehand.

I employ these global variables
inside DataArrival in order to
remember that state of the data
transfer from a previous call to
DataArrival. With past versions of
Borland Pascal, I may have used
typed constants instead of global
variables. With Delphi 2, Borland is
moving away from assignable
typed constants (constants that
can change), even adding a com-
piler switch {J+} to prevent doing
this.

The global variables are utilized
in my implementation section and
are defined as:

var
 count : integer = 0;
 pheader : PTFisherTCP = nil;
 head : pbyte = nil;

I can also use these variables to

determine if the control is starting
a new transaction, or getting more
data from an existing transaction.
If it is a new transaction, then I
know this is a record header and
can confidently extract data to de-
termine the size of the data trans-
fer, allocate memory for the data
and set the constants to receive
data. Otherwise I just append this
packet to the data buffer.

A key point of DataArrival is it
does not actually get data, but it
instead informs you that data is
now available and offers the only
chance to copy the data from the
current packet. If you do not get the
data now the next packet will over-
write this packet and the data will
be lost. To grab this crucial data,
you call the control’s GetData
method, declared as:

procedure GetData(
 var Data: Variant;
 const Type_,
 MaxLen: Variant); stdcall;

Data is the variant buffer that will
hold the current packet’s informa-
tion. Type_ describes what type of
variant Data is (ie the type of infor-
mation placed in Data (see the Help
for the different types the NetMan-
age control can recognize). MaxLen
is the size of the data waiting to be
picked up. Another pitfall: once
you call GetData, the BytesTotal
variable for DataArrival will be
cleared! So if you’re adding up the
bytes received, do it before you call
GetData.

Back to the game plan. The vari-
able Head is used as a pointer to the
beginning of the data buffer allo-
cated in memory. Another pointer
will be used to track the current
position within the data buffer.
Think of this second pointer as a
window into your full data buffer.

Each time new data arrives, I
write to the current position
“window” and then move the
“window” pointer forward by the
number of bytes just written to
memory.

Because variants are used to get
data from the TTcp control, it will
need to be converted to Object
Pascal types in order for Delphi to
manipulate the data natively.

procedure TMainForm.TCP1DataArrival(Sender: TObject; bytesTotal: Integer);
var
 Window : pbyte;
 Ptr: pointer;
 DataBuffer, HeaderBuffer: variant;
begin
 if pheader = nil then begin // new data !!
 {New header, get setup}
 pheader := AllocMem(SizeOf(TFisherTCP));
 HeaderBuffer := VarArrayCreate([0,SizeOf(TFisherTCP) -1], varbyte);
 {grab the header record}
 Tcp1.GetData(headerbuffer, (VT_Array or VT_ui1) , SizeOf(TFisherTCP));
 Try
 {copy the data to my header variable}
 ptr := VarArrayLock(headerbuffer);
 move(Ptr^, pheader^, SizeOf(TFisherTCP));
 Finally
 VarArrayUnlock(HeaderBuffer);
 end;
 {finally allocate a buffer for the data, using a head pointer}
 head := AllocMem(pheader^.size + 1 * sizeof(byte));
 caption := ’Receiving’;
 end else begin
 { pheader is not nil, means we are grabbing data! }
 { set up my data structures}
 DataBuffer := VarArrayCreate([0,BytesTotal], varbyte);
 {set my pointer}
 window := head;
 inc(window, count);
 {grab a chunk of data from the port}
 inc(count, Tcp1.BytesReceived);
 Tcp1.GetData(DataBuffer, (VT_Array or VT_ui1) , BytesTotal);
 {copy that hunk of data over}
 try
 ptr := VarArrayLock(DataBuffer);
 move(Ptr^, window^, BytesTotal);
 finally
 VarArrayUnlock(DataBuffer);
 end;
 {At the end of each data transfer, check to see if this was the last
 transfer...if so, use the data somehow}
 if count = pheader^.size then begin
 UseData(head, count, pheader^.tag);
 {Reset the data connection for the next transfer}
 FreeMem(pheader);
 pheader := nil;
 count := 0;
 FreeMem(head);
 caption := ’Transfer Complete’;
 end //if-count
 end; //if-else..(pheader = nil)
end;

➤ Listing 8

May 1997 The Delphi Magazine 49

Fortunately the process is almost
identical to the system used in
SendApp. I’ll need HeadBuffer and
DataBuffer to be variants. Sharing
one is an option, but I will use two
variants and keep this as simple as
possible. These two variables will
correspond to SendApp’s HeadBuffer
and DataBuffer variables. Again a
pointer is needed to lock down the
variant memory that comes in and
store it to the Head variable (see the
var section in Listing 8).

As mentioned before, the Data-
Arrival event in RecApp will be
called multiple times. In any given
iteration, I can tell if there is a new
transaction based on the value of
PHeader. PHeader is initialized to nil,
which indicates there is a new data
transmission and a data header is
being received.

I will allocate memory for my
header and set up the variant array
to collect the header file from the
TTcp.GetData method. I will then
lock down the memory and copy,
much as I did in SendApp.

Once the header record is trans-
ferred and copied from a variant to
a more “conventional” memory
buffer, I can allocate enough
memory for the entire transaction.

If PHeader was not nil, then I
know I have already received the
header and am getting data for the
first time, or getting more data
from an existing transaction: it
does not matter which. First, I allo-
cate memory for the variant that
GetData will use. Then I move the
write “window” along by the cur-
rent count. After incrementing the
location of the “window” I add the
current number of bytes to count.

Next I request a binary packet
from the TTcp control’s port. An-
other pitfall: what is the correct
data type to use for the variant?
The control wants an array of
bytes, but there is no variant type
for a byte array [If you are sitting
there chewing your fingernails
because you never worked with
variants before, don’t fret, just check
out Xavier Pacheco’s excellent
article on the subject in Issue 13,
September 1996. Editor]. The
solution is to declare the type as a
combination of VT_Array and VT_UI1
like this:

Tcp1.GetData(
 DataBuffer,
 (VT_Array or VT_ UI1),
 BytesTotal);

Finally, I lock down the memory
and copy it over as shown earlier.

For each transmission, I need to
check if the current batch of data
completes the current transaction.
To do this, I check to see if the
header record Size field is equal to
the Count variable. If it is, this trans-
action is complete. I’ll then reset
the variables and constants to han-
dle a new transaction. Of course I’ll
also need to put the data I just
received to work in some way. In
this simple case, I’ll keep it to a
single procedure named UseData.

If this was not the last bit of data
in the current transmission, then
the DataArrival event will fire
again. All the variables have been
left in the state to receive more
data and append it to the data al-
ready received, so there will be
nothing more to do.

Assuming all goes according to
plan, the data is now in the receiv-
ing application. Using a modular
approach, I pass the received data
on to a procedure called UseData for
processing (Listing 9). It takes a
pointer, the size of the data pointed
at and the type of information be-
ing pointed to. After that I use a
case statement in the body of the
procedure to perform different
processing based on the value of
DataType.

In the first case, I’ll load a bitmap
into a TImage and resize the main
form to match the size of the
TImage. This is fun, but kind of dan-
gerous, as bitmaps can be smaller
than the legal size of a form. So
always keep in mind your incoming
data may not be 100% compatible
with your data handlers. For a
.WAV sound, I simply play it from
memory using the PlaySound API
function. Finally, for the executable
I use a TFileStream to write it to disk
and fire off CreateProcess to launch
the program.

procedure UseData(Head : PByte; Count, DataType: Integer);
var
 Stream: TMemoryStream;
 FileStream: TFileStream;
 StartUpInfo: TStartUpInfo;
 ProcessInfo: TProcessInformation;
begin
 case DataType of
 OneI_BitMap :
 begin
 Stream := TMemoryStream.Create;
 try
 Stream.Write(Head^, Count);
 Stream.Seek(0,0);
 with MainForm do begin
 Image1.Picture.Bitmap.LoadFromStream(Stream);
 Width := Image1.Picture.Bitmap.Width;
 Height := Image1.Picture.Bitmap.Height;
 end;
 finally
 Stream.Free;
 end;
 end;
 OneI_Wav :
 begin
 if not PlaySound (pChar(head), 0, snd_memory) then
 ShowMessage(’Received a .wav that could not played’)
 end;
 OneI_Exe:
 begin
 FileStream := TFileStream.Create(’c:\sample.exe’, fmCreate);
 try
 FileStream.write(head^, Count);
 finally
 FileStream.free;
 end;
 FillChar(StartUpInfo, SizeOf(TStartUpInfo), 0);
 with StartUpInfo do begin
 cb := SizeOf(TStartUpInfo);
 wShowWindow := SW_ShowNormal;
 end;
 CreateProcess(’c:\Sample.exe’, Nil, Nil, Nil, False,
 NORMAL_PRIORITY_CLASS, Nil, Nil, StartupInfo, ProcessInfo);
 {might want to delete the file now - might not...}
 end;
 else
 ShowMessage(’What is this Data?’);
 end; //case
end;

➤ Listing 9

50 The Delphi Magazine Issue 21

Conclusion
In the past you might have thought that sending cus-
tom data over a TCP/IP network was a complicated task
reserved for gurus, but as you can now see the Internet
Solutions Pack TCP control brings custom TCP/IP pro-
gramming to everyone. This article demonstrates how
to transmit three different types of custom data over
the wire, but it should be clear how to apply the tech-
niques I’ve demonstrated to any type of data. Heck, you
could even use these techniques to share data with
friends over the internet. Keep the amount of data
small, though, it’s not nice to suck up all that bandwidth
better used for playing Decent...

Bill Fisher is a Senior Engineer with Borland’s Delphi
Developer Support department. He has been with this
group since the early days of Delphi 1.0. In addition
to his primary customer support role, he is involved in
recruiting, interviewing and training new Delphi
team members. You can contact him at: wfisher@corp.
borland.com

Bill would also like to thank Steve Teixeira for his
editing of and and input to this article. Steve is a
Software Engineer in Borland’s Delphi R&D depart-
ment and the co-author of Delphi 2 Developer’s Guide
from SAMS publishing. You’ll find his articles publish-
ed in The Delphi Magazine. Say howdy to Steve at
steixeira@corp.borland.com.

May 1997 The Delphi Magazine 51

	Sender Application
	Receiving Application
	Conclusion

